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The diameters of the coexistence curves of aqueous solutions of tetrahydrofuran
and two quasibinary, isotopically related mixtures near their lower consolute
points are analyzed in terms of different composition variables including mole,
mass, and volume fractions, using various possible definitions of the reduced
temperature. A (1−a) anomaly is observed for all choices of the temperature
and concentration variables. In terms of mole fraction the diameters are free
from a regular contribution as well as from a spurious 2b contribution arising
from the inappropriate choice of the order parameter. The mass and volume
fractions lead to an apparent symmetrization of the coexistence curve, but cause
significant 2b contributions to the diameter that could mask the 1−a anomaly.
A reduced temperature that accounts for the presence of both upper and lower
critical consolute points is found to be preferable, although the second critical
point is 80 K away.

KEY WORDS: aqueous solutions; coexistence curve diameter; critical point;
tetrahydrofuran.

1. INTRODUCTION

The universality of critical behavior among fluids and certain lattice models
is well established, but there are problems regarding the lack of symmetry
in real fluids. In ferromagnets the magnetization of the coexisting phases is
symmetric around zero. Lattice models with ‘‘hole-particle’’ symmetry [1]
obey the law of the ‘‘rectilinear diameter’’ for the order parameter P of the
coexisting phases 1 and 2; Pd — (P1+P2)/2=Pc+Ay, where index c refers



to the value at the critical point and y is the temperature distance from the
critical temperature Tc. Analytical equations of state predict such a linear
temperature dependence of the diameter as well.

Liquid-vapor and liquid-liquid coexistence curves lack this symmetry.
Lattice and continuum models without hole-particle symmetry predict Pd
to show a y1−a singularity due to ‘‘field mixing’’ that occurs when the inter-
molecular potential is a function of thermodynamical variables [2]. a is
the exponent of the heat capacity. Experimentally, this (1−a) anomaly is
observed for one-component fluids [3], where the density r provides a
measure for P. In two-component mixtures, decisive results are obscured
by problems regarding the choice of P [3, 4]. Criteria for a ‘‘good’’ choice
make use of symmetry arguments, such as a critical concentration close to
0.5, a symmetrical coexistence curve, or a (1−a) anomaly of the diameter.
Moreover, the diameter should be free from a spurious y2b term that arises
from a ’’wrong’’ choice of P [4, 5] (b is the critical exponent of the coexis-
tence curve). Thus, a proper description of the diameter anomaly has often
been used as a means for assessing the choice of P [5]. However, usually
the various requirements cannot be satisfied simultaneously [6, 7]. In the
present study we examine these aspects by considering data near the lower
critical solution temperature of tetrahydrofuran (THF)—water mixtures.

2. RESULTS

2.1. Experimental Data

We analyze the diameters of three isotopically related aqueous solu-
tions of tetrahydrofuran (THF) [8] near their lower consolute tempera-
tures (LCT); solutions of THF in normal water possess a closed-loop phase
diagram limited by upper (UCT) and lower (LCT) critical solution tem-
peratures at 344 and 410 K, respectively, at a critical mole fraction X=
0.2255 of THF. Deuteration of water results in an extension of the misci-
bility gap in the binary THF+D2O mixture by about 20 K. Progressive
substitution of THF by its fully deuterated homologue THFd leads to a
shrinkage of the miscibility gap, which eventually disappears for 75%
deuteration. This results in a quasibinary THF+THFd+D2O mixture with
UCT and LCT close to those of the normal THF+H2O mixture. Com-
parison of results for these isotopically related mixtures can be used to
single out nonuniversal, substance-specific contributions that occur further
away from the critical point [8].

Coexistence curve data measured by the minimum beam deviation
method are reported elsewhere [8, 9]. The refractive index data were con-
verted to mole, weight, and volume fractions using excess volumes and
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thermal expansion coefficients [9]. Large excess volumes result in substan-
tial changes of the location and shape of the coexistence curves in terms of
different concentration variables. A detailed analysis [8, 9] of the coexis-
tence curves indicated that not only the magnitude of the critical amplitu-
des, but also the sign of the corrections to scaling, depend on the choice of
the order parameter.

As a further problem, there is the need for a redefinition of y for reen-
trant phase transitions, because then y depends on the location of the
second critical point [10]. In fact, some binary ionic systems studied
recently near the UCT [6] later proved to be closed loops with the LCT
hidden by crystallization [11]. It was therefore of interest to us, to what
extent a second critical point affects the data analysis, if the latter is
typically 80 K and more away.

2.2. Variables and Fitting Equations

We compare here reduced temperatures defined as usual by y=
(T−Tc)/Tc and also by yŒ=(T−Tc)/T [12, 3], where Tc refers to the LCT.
Moreover, we also used yUL=y(TU−T)/TU and y −UL=yŒ(TU−T)/T [10],
where TU is the UCT. The mole fraction X and weight fraction w of THF
in the coexisting phases were evaluated in Ref. 9. The volume fraction j
was estimated by assuming that the volume reduction results from a change
in the specific volume of only water [9].

Because in the experiments the composition of both coexisting phases
P1 and P2 were probed, the order parameter DP=(P1−P2)/2 and diameter
Pd=(P1+P2)/2 of the coexistence curves can be analyzed independently.
We use a modified Wegner expansion [13]:

Pd=Pc+A1−ay1−a(1+ADyD+A2Dy2D+·· · )+A1y · · ·A2by2b (1)

with the Ising critical exponents a=0.109, b=0.3258, and D=0.504 [14];
Ai’s are the nonuniversal amplitudes. For comparison, we used the cross-
over equation for the diameter proposed by Nicoll and Albright [15] in the
form of a Wegner expansion with 2 correction terms [5b]

Pd=Pc+d1y+d2y(y−a/D−1)+d3y(t1−a/D−1) (2)

where y−1=1+d0(y−D−1); the di are substance-specific amplitudes. Third,
exploiting the similarity between the diameter and specific heat anomalies,
we also tested our data against the extended equation available for the heat
capacity, by relating the amplitude of the first Wegner correction-to-scaling
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AD for heat capacity to the amplitude of the leading singular term and
critical linear term of the diameter expansion [16]. Then, Eq. (1) can be
rewritten as

Pd=Pc+A1−ay1−a(1+A
−

Dy
D+A2Dy2D)−A1−aB1y+Bregy (3a)

with

A −D=
1−a
1−a+D
1R−BB1
1−a
2D/a (3b)

where R−B=1.334 [16] is the universal amplitude ratio for the ordered
state of the system, and Bregy is the regular, noncritical contribution.

Initially, we fitted the experimental data to Eq. (1) with various order
parameters. The best choice (here the mole fraction) was also fitted to
Eqs. (2) and (3). The quality of the fits was assessed using the q2-criterion
with 0.0007 and 0.001 assumed as standard deviations of the mole and
weight (volume) fractions, respectively [9].

2.3. Results

The diameters of the THF+D2O mixture are shown in Fig. 1 for dif-
ferent composition variables. Similar features were observed for the THF+
H2O and THF+THFd+D2O mixtures. Figure 1 shows that (i) the weight
fraction w provides the most symmetric coexistence curves; (ii) far from the
critical point the slope of the ‘‘rectilinear diameter’’ has a different sign for
different variables; and (iii) the critical anomaly, i.e., the bend of the
diameter near Tc for mole fraction X, is opposite to that for the two other
variables.

The fits to Eq. (1) in Tables I and II, however, do not reflect these
qualitative observations; the amplitude A1−a of the leading critical contri-
bution is found to be positive for all composition variables in all mixtures.
The linear term, which includes both critical and noncritical effects, appears
to be negligible in all cases. The most important conclusion is, however,
absence of the 2b contribution for diameters on the mole fraction scale
(cf. Table I). In contrast, this spurious contribution is significant for weight
and volume fractions (cf. Table II), causing the apparent negative ampli-
tudes of the bend seen in Fig. 1. Moreover, from the comparison of the fits
in Table II, it becomes obvious that relative importance of the 2b term
compared to the 1−a term is larger for volume fractions than for weight
fractions. The 2b contribution to the diameters in the weight and volume
fraction scales possesses similar magnitudes.
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Fig. 1. Diameter of THF+D2O mixture for different composition
variables: mole fraction x (g), weight fraction w (n), and volume
fraction j (i). For mixtures THF+H2O ( ×+) and THF+THFd+
D2O (N), the diameter is shown on the mole fraction scale.

We have also tried to achieve a symmetrization of the coexistence
curves by applying the generalized transformation [7],

P1=
mX1

mX1+1−X1
(4)

which reduces to the weight fraction if m is the ratio of the molar masses of
the components, to the volume fraction if m is the ratio of molar masses
normalized their densities, or to the effective molar concentration if the
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second component is assumed to be associated with m molecules in each
cluster [17].

Figure 2 shows the diameters for THF+D2O for several values of m.
Evidently, both, a symmetric coexistence curve centered around a critical
composition of 0.5 and a minimized curvature of the diameter, cannot be
achieved simultaneously. The value m=3.45 provides the critical concen-
tration 0.5, while m=2.6 reduces the overall temperature change of
the diameter down to the lowest value (1.5%). The most important fact,
however, is the monotonic increase of the 2b contribution with m, observed
for all mixtures. The ratio of the amplitude A2b of the ’’spurious’’ 2b term

Fig. 2. Behavior of the diameter in THF+D2O mixture as a function
of temperature for several choices of the composition variable defined
by Eq. (5): m=1 (n), m=2.6 (g), m=1.7 (j), m=3.45 (i).
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Fig. 3. Ratio of the amplitudes A2b/A1−a obtained from the fits of
the diameter of THF+H2O to Eq. (2) assuming A2D=0 as a function
of parameter m for a variety of choices of the composition variable
defined by Eq. (5). The fits corresponded to mole, weight and volume
fractions are indicated by arrows.

to the amplitude of the critical anomaly A1−a for the various order param-
eters is shown in Fig. 3 for THF+H2O. Below m=1.2 the 2b contribution
to the diameter is always negligible. Because the physical meaning of P is
doubtful for m < 1, we conclude that the mole fraction X, corresponding to
m=1, is the preferable composition variable in the cases considered here.

In Ref. 9 we have shown that modified reduced temperatures yŒ, and
especially, yUL and y −UL, that account for the presence of the UCT, are pre-
ferable for describing the shape of the coexistence curve over a wide tem-
perature range. We obtained no noticeable difference when y is replaced by
yŒ for all composition variables. Results of the fits to Eq. (1) using the
reduced temperature yUL are given in Table III. Again, the 2b contribution
is only negligible in the mole fraction scale. Satisfactory fits for w and j
are, however, obtained with only one correction term to scaling. Recalling
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Table III. Parameters of the Fits to Eq. (1) of the Diameter in Terms of Different Composi-
tion Variables Using the Reduced Temperature yUL. (For the THF+D2O Mixture the Fitting
Data Set Was Reduced by Excluding 20 Points in Order to Get Similar Intervals in Terms of

yUL: yUL < 0.007 for all Mixtures.) The Uncertainties Denote 1 Standard Deviation

N P Pc A1−a AD A2D A2b q2

THF+H2O

1 X 0.2254 6.06±0.09 −6.68±0.11 (0) (0) 0.78
1a X 0.2256 4.86±0.05 (0) −68.2±1.6 (0) 0.65
2 j 0.5781 6.18±0.98 −5.87±0.17 (0) −1.62±0.18 0.55
3 w 0.5382 7.07±0.99 −6.21±0.18 (0) −1.58±0.18 0.56

THF+D2O

4 X 0.2251 5.68±0.10 −6.18±0.14 (0) (0) 0.69
5 j 0.5873 4.10±1.10 −6.18±0.32 (0) −1.36±0.20 0.53
6 w 0.5131 5.01±1.12 −6.15±0.27 (0) −1.15±0.20 0.55

THF+THFd+D2O

7 X 0.2044 5.51±0.07 −8.26±0.07 (0) (0) 0.55
8 j 0.5573 4.40±0.86 −7.71±0.49 (0) −1.40±0.16 0.46
9 w 0.4870 5.61 ± 0.86 −7.73±0.39 (0) −1.24±0.16 0.47

that two correction terms are necessary when the ordinary reduced tem-
perature is used (see Table II), the reduced temperatures yUL and y −UL are
preferable.

Figure 4 shows that the relative importance of the 2b contribution for
the diameter in terms of volume fractions is indeed significantly reduced, if
the reduced temperature yUL is used. Moreover, for yUL (see Table III) the
amplitudes of the first corrections to scaling are independent of the com-
position variable, and the amplitude of the 2b contribution for w and j is
the same for each mixture. The amplitudes A1−a for the leading singular
term for w and j coincide with the same amplitudes for X, if the uncer-
tainty of fitting parameters are taken into account. The amplitudes AD are
more precisely obtained from the fits than the leading singularities, as seen
from Tables II and III. AD is found to be negative for all temperature and
composition variables. The absolute value of the first corrections |AD |
do not depend on the composition variable, but on the choice of the
reduced temperature. The amplitude AD in the THF+THFd+D2O mixture
is always more negative than in the THF+H2O mixture. A similar trend is
observed for the amplitude of the first Wegner correction for the order
parameter [9].
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Fig. 4. Relative importance of 2b-contribution in the diameter in
volume fraction as a function of reduced temperature y for two defi-
nitions of the reduced temperature : y=(T−Tc)/Tc (—) and yUL=
y(T−TU)/TU (---). The amplitudes Ai are taken from fits 2 (Tables II
and III) for THF+H2O (curves 1), fits 6 (Table II) and 5 (Table III)
for THF+D2O (curves 2), and fits 10 (Table II) and 8 (Table III) for
THF+THFd+D2O (curves 3).

Summarizing the results at this stage, we observe that (i) for all mix-
tures the diameter in weight and volume fractions has a 2b contribution,
while this contribution is negligible for the mole fraction. (ii) The linear
contribution is insignificant for all concentration and temperature vari-
ables. (iii) The reduced temperatures yUL and y −UL are more appropriate
than y and yŒ, although the second critical point is comparatively far away.

Finally, we analyze briefly our experimental data by fits based on Eqs.
(2) and (3). In both cases a 2b term is not required. For simplicity we con-
sider here only results for the mole fraction representation. Equation (2)
provides the best fits when the ordinary reduced temperature y is used
(cf. Table IV). Because the fitting parameters in Eq. (2) have no clear con-
nections with the parameters in Eq. (1), we are not able to make any
physical conclusion based on these fits.

In Eq. (3) the linear contribution to the diameter is represented by a
superposition of the critical linear contribution A1−aB1y and the regular
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Table IV. Results of the Fits to Eq. (2) of the Diameter in Terms of Mole Fraction using the
Reduced Temperature y. For the THF+D2O Mixture the Fitting Data Set Was Reduced
By Excluding 11 Points in Order to Get the Same Interval in Terms of y: y < 0.07. The

Uncertainties Denote 1 Standard Deviation.

Mixture Xc d0 d1 d2 d3 q2

THF+H2O 0.2256 0.40±0.27 −1.09±0.44 0.197±1.5 −3.43±0.89 0.66
THF+D2O 0.2251 0.13±0.17 −0.255±0.08 0.194±5.7 −4.08±3.4 0.78
THF+THFd+D2O 0.2045 0.13±0.06 −0.488±0.07 −0.95±4.0 −4.00±2.3 0.54

contribution Bregy. The critical linear term in field theory is connected with
the first correction to scaling and thus does not lead to a new free fitting
parameter. The fits improve in the series y, yŒ, yUL, and y −UL , i.e., y −UL pro-
vides the best fits shown in Table V. Significant contributions from the
second correction to scaling are observed, because, owing to its interrela-
tion to the critical linear term, the first correction is bound to positive
values. In spite of more adjustable parameters than in Eq. (1), Eq. (3) is,
however, unable to improve the fits, even if the regular noncritical contri-
bution Bregy is included (c.f. Table V). This bound of the amplitudes in
Eq. (3) results thus in the large uncertainties. However, no significant

Table V. Results of the Fits to Eqs. (1) and (3) of the Diameter in Terms of Mole Fraction
Using the Reduced Temperature y −UL. (For the THF+D2O Mixture the Fitting Data Set Was
Reduced by Excluding 20 Points in Order to Get the Same Interval in Terms of y −UL:

y −UL < 0.007 for All Mixtures. The Uncertainties Denote 1 Standard Deviation)

N Eq. Xc A1−a AD/A
g
D A2D Breg q2

THF+H2O

1 (1) 0.2253 4.25±0.09 (0) −56.0±1.4 − 0.67
2 (3) 0.2256 6.59±0.17 4.98±0.35 −60.6±11 (0) 0.66
3 (3) 0.2255 10.3±5.9 6.73±0.35 −52.9±11 −5.3±8.5 0.66

THF+D2O

4 (1) 0.2251 4.69±0.08 −5.30±0.14 (0) − 0.68
5 (3) 0.2252 5.67±6.3 0.69±2.2 −29.4±13 (0) 0.73
6 (3) 0.2249 9.39±6.4 1.48±0.89 −13.7±18 −4.5±5.9 0.71

THF+THFd+D2O

7 (1) 0.2045 4.39±0.22 −4.98±1.4 −27.5±14 − 0.56
8 (3) 0.2255 5.43±4.3 0.74±1.6 −49.7±1.3 (0) 0.57
9 (3) 0.2253 9.80±5.2 3.27±0.22 −34.3±7.1 −5.1±6.8 0.56
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differences are observed between amplitudes A1−a and Breg in the three
mixtures, while it is not so for the corrections to scaling. The largest value
of AD is found in THF+H2O compare to deuterated mixtures.

3. CONCLUSIONS

All three isotopically related H2O-THF mixtures show a critical (1 −a)
anomaly in the diameter which is independent of the choice of reduced
temperature or composition variable. A significant 2b contribution is
found for the weight and volume fractions, which masks the true critical
anomaly, while the mole fraction is free of the 2b contribution. No linear
terms were observed for all choices of concentration and reduced tempera-
ture. In agreement with previous results for the coexistence curves, reduced
temperatures that account for the presence of both upper and lower critical
solution points were found to be most appropriate for data reduction,
although the second critical point is about 80 K away.

By analogy with the lattice-gas model, the density is a good, albeit not
perfect, order parameter for one-component systems (a more appropriate
choice is based on the linear combination r−bs, where s is the entropy,
and b is a mixing coefficient, but from practical purposes such an analysis
is usually not feasible). In contrast, it is usually stated that there is some
ambiguity in the order parameter for mixtures, because, on thermodynamic
or experimental grounds, many choices exist. If one accepts, however, the
principle of isomorphism between one- and two-component systems, one
expects that, among all variables of practical relevance, the volume fraction
is the best choice [18]. The mole fraction X is expected to be suitable,
when the molar volumes of the components are of similar size. In the
present case, we found however the mole fraction to be most suitable, in
clear contrast to these expectations.

Second, the correction amplitudes in the Wegner series are not inde-
pendent, but related to AD through A2D 3 A

2
D, A3D 3 A

3
D, etc. with AD > 0

as an important condition for a converging series [19]. In practice, it is
however difficult to implement these restrictions in data evaluation, and
Eq. (1) is usually treated as an expansion with freely adjustable coefficients.
It is seen that such an expansion does not provide the expected regularities
concerning the relative magnitudes of the correction terms and the sign
of these terms. A negative value of AD may reflect some additional non-
asymptotic effects irrelevant to the Wegner expansion. This additional
contribution might originate from fifth- and higher-order terms in the
Landau–Ginzburg Hamiltonian [20] or from regular non-critical terms.
The latest contribution is expected to be negative and dominates in the
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range y > 10−2 [18]. Our analysis of the order parameter [9] and diameter
indicates that this negative regular contribution could be significantly
reduced by proper choice of the reduced temperature: yUL and y −UL. The
results of fits to the restricted Eqs. (3) given in Table V show the values of
the first Wegner correction, assuming that non-Wegner terms contribute to
the amplitudes A2D and Breg. The largest value of AD for the THF+H2O
mixture indicates the strongest trend to mean-field criticality compared to
deuterated mixtures. This tendency is also present, at a reduced level, for
other composition and temperature variables.
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